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This paper addresses the problem of assessing the location and extent of damage in a

vibrating structure by means of vibration measurements. Frequency domain identifica-

tion methods (e.g. finite element model updating) have been widely used in this area

while time domain methods such as the extended Kalman filter (EKF) method, are more

identification and localisation lies in: the high computational cost, the dependence of

estimation results on the initial estimation error covariance matrix Pexð0Þ, the initial

value of parameters to be estimated, and on the statistics of measurement noise Rex and

process noise Q ex. To resolve these problems in the EKF, a multiple model adaptive

estimator consisting of a bank of EKF in modal domain was designed, each filter in the

bank is based on different Pexð0Þ. The algorithm was iterated by using the weighted

global iteration method. A fuzzy logic model was incorporated in each filter to estimate

the variance of the measurement noise Rex. The application of the method is illustrated

by simulated and real examples.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Damage in structures is defined as ‘ychanges to the material and/or geometric properties of these systems, including
changes to the boundary conditions and system connectivity, which adversely affect the current or future performance of
these systems’ [1]. For safety reasons and because of the economic benefits that can result, the interest in the ability to
detect, locate and quantify structural damage is pervasive throughout the engineering communities.

There exist many ways to classify vibration-based structural damage identification methods and the damage
classification system presented by Rytter is adopted here, which defines four levels of damage assessment [2]:
(1)
 level 1 (detection): determination that damage is present in the structure;

(2)
 level 2 (localisation): level 1 plus determination of the geometric location of the damage;

(3)
 level 3 (quantification): level 2 plus quantification of the severity of the damage; and

(4)
 level 4 (prediction): level 3 plus prediction of the remaining service life of the structure.
The level 1 and level 2 damage assessments are both based on the comparison of features before and after damage. The
comparison-based techniques are ‘forward problems’ and relatively simple. On the contrary, level 3 damage assessment
All rights reserved.
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Nomenclature

A continuous system matrix
Af the sensitivity matrix of nonlinear function to

state vector
AF the discrete fundamental matrix at time tk
B input matrix of dynamic system
Be input matrix of state space model
C damping matrix
fðzðtÞ;uðtÞ; tÞ nonlinear function of continuous state

vector
frðzrðtÞ;uðtÞ; tÞ nonlinear function of reduced continu-

ous state vector
G input matrix in measurement equation
H measurement matrix of state space model
H0 measurement matrix of dynamic system
Hex measurement matrix of extended Kalman filter
Ji the cost function of ith Kalman filter in the

bank
K stiffness matrix
Kg Kalman gain
L process noise matrix for dynamic system
M mass matrix
p state vector in the modal coordinate system

defined by q9Up
pr the first rth elements of P
Pri the probability of the ith extended Kalman

filter in the bank
PR the range that the bank of EKF could cover
PexðkÞ the error covariance matrix associated with

the updated estimate ẑðkÞ
Pexðkþ 1=kÞ error covariance matrix associated with

the prior estimate ẑðkþ 1=kÞ

Popt
ex ð0Þ optimal initial error covariance matrix in the

bank of Kalman filters
Pxx error covariance matrix related with x̂
Pmod

xx error covariance matrix related with x̂ in
modal coordinates

Paa error covariance matrix related with â
qðtÞ the displacement vector (m)
_qðtÞ the velocity vector (m/s)
€qðtÞ the acceleration vector (m/s2)
Q s continuous covariance matrix of process noise

wðtÞ
Q ex discrete covariance matrix of process noise for

extended Kalman filter
Q exs continuous covariance matrix of process noise

for extended Kalman filter
RðkÞ variance matrix of measurement noise vðkÞ
Rex variance matrix of measurement noise for

extended Kalman filter, Rex ¼ R
RðkÞði;iÞ the ith diagonal element of RðkÞ
SðkÞ covariance matrix of residual vector mðkÞ

u force (N)
vðkÞ measurement noise
wðtÞ continuous process noise vector
waðkÞ process noise on the parameter vector equa-

tion
wf weighting factor which balance the TAAU and

TANIS criteria.
wexsðtÞ the continuous process noise for EKF
W weighting factor in weighted global iteration

method
x state vector
zðtÞ the state vector in extend Kalman filter
zðkþ 1=kÞ the prediction of state vector at tkþ1 given

estimate zðkÞ
zrðtÞ the state vector in the reduced modal extended

Kalman filter
ZaðkÞ covariance matrix of waðkÞ

a parameter vector
âopt the optimal parameter vector estimated by the

whole bank of EKFs
gi the ith modal damping defined by gi ¼ 2zioi

C modal damping matrix defined by C9UTCU
Cr the reduced damping matrix containing the

first rth modal dampings
dPi the adjustment of the previous optimal Popt

ex ð0Þ
for the ith EKF

�̂n time-averaged normalised innovation squared
zi the damping ratio of the ith mode.
li the square of ith eigenfrequency of the un-

damped system
K eigenvalue matrix
Kr the reduced eigenvalue matrix containing the

first rth eigenvalues
mðkÞ residual vector at time step tk

U mass normalised modal matrix
Ur reduced modal matrix containing the first rth

column of U
r̂ðlÞ time-average autocorrelation of residuals
jðẑðkÞ;uðkÞ; tk; tkþ1Þ propagation function from ẑðkÞ to

ẑðkþ 1Þ
oi the ith eigenfrequency of the undamped

system
DoM degree of mismatch
EKF extended Kalman filter
EK–WGI weighted global iteration method for extended

Kalman filter
FIS fuzzy inference system
FL–AKF fuzzy logic-based adaptive Kalman filter
KF Kalman filter
MMAE multiple model adaptive estimator
MOKF modal Kalman filter
TAAU time-average autocorrelation of residuals
TANIS time-averaged normalised innovation squared
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(i.e. damage quantification) is a significant challenge because it is an ‘inverse problem’ [3]. In techniques for level 3 damage
assessment, a correlated analytical finite element (FE) model is generally needed. Therefore, level 3 damage assessment is
closely connected with FE model updating.
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Many FE model-based identification methods have been developed. In terms of the equations they adopt, these methods
can be loosely classified as frequency domain methods and time domain methods [4]. Compared with the frequency
domain methods, which use modal parameters to update physical parameters in FE model, time domain methods directly
update FE model parameters from input/output (I/O) time series. Therefore, they generally reveal more information for the
purpose of damage identification, albeit at a higher computational cost. These methods include instrumental variables (IV)
method [5], restoring force method [6], and extended Kalman filter (EKF) method [7]. Among these methods, the EKF
method has been used by many researchers [8], and has been shown to behave well with relatively large I/O noise.

However, the difficulties of applying EKF hinder its application in structural damage localisation. These difficulties include:
the high computational cost, the dependence of estimation results on the initial estimation error covariance matrix Pexð0Þ, on
the initial value of parameters to be estimated, and on the statistics of measurement noise Rex and process noise Q ex.

Accordingly, this paper strives to resolve these problems in the EKF. The proposed method is a modified EKF, where all
the previous problems have been handled by means of combining different techniques. This includes a multiple model
adaptive estimator (MMAE) consisting of a bank of EKF designed in modal domain (MOKF), each filter in the bank is based
on a different Pexð0Þ. The algorithm iterates using the weighted global iteration (WGI) method. Finally, a fuzzy logic (FL)
model was incorporated in each filter to estimate the variance of the measurement noise Rex.

The structure of the paper is organised as follows. In Section 2, the traditional EKF is introduced. In Section 3, the
modified EKF is proposed. The application of the proposed method is illustrated by simulated and real examples in Section
4. Finally, conclusions are given in Section 5.

2. Mathematical model of the system and the extended Kalman filter

2.1. Equation of motion

Within the framework of finite element modelling, the equations of motion of a linear dynamical system can be written as

M €qðtÞ þ C _qðtÞ þ KqðtÞ ¼ BuðtÞ (1)

where M, C and K denote structural mass, damping and stiffness matrices, respectively; uðtÞ is the external force vector, B is
the input matrix, qðtÞ, _qðtÞ and €qðtÞ are, respectively, the displacement, velocity and the acceleration vectors.

The corresponding state space formulation is

_xðtÞ ¼ AxðtÞ þ BeuðtÞ (2a)

yðtÞ ¼ HxðtÞ þ GuðtÞ (2b)

where A, Be, x(t) take the well-known form

A ¼
½0� I

�M�1K �M�1C

" #
; Be ¼

½0�

M�1B

" #
; xðtÞ ¼

qðtÞ

_qðtÞ

" #
(3)

The matrices of the measurement equation H and G depend on the nature of the measured quantities (displacements,
velocities, accelerations, etc.).
(1)
 Displacements:

if yðtÞ ¼ H0qðtÞ (4a)

then H ¼ ½H0 ½0��; G ¼ ½0� (4b)
(2)
 Velocities:

if yðtÞ ¼ H0 _qðtÞ (5a)

then H ¼ ½½0� H0�; G ¼ ½0� (5b)
(3)
 Accelerations:

if yðtÞ ¼ H0 €qðtÞ (6a)

then H ¼ ½�H0M�1K �H0M�1C�; G ¼ ½H0M�1B� (6b)

where the matrix H0 is composed by zeros and ones and determines which quantities have been measured.
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2.2. Extended Kalman filter for mechanical structure
The EKF approach applies the standard Kalman filter (for linear systems) to nonlinear systems with additive white noise
by continually updating a linearisation around the previous state estimate, starting with an initial guess. In other words,
only a linear Taylor approximation of the system function at the previous state estimate and the observation function at the
corresponding predicted position are considered. This approach gives a simple and efficient algorithm to handle a
nonlinear model. Furthermore, the EKF can be applied to the simultaneous identification of states and parameters.
Assuming in Eq. (1) that only K and C contain the parameters a to be estimated, then the state vector x can be extended to
be

zðtÞ ¼
xðtÞ

a

� �
(7a)

where a ¼ ½a1 a2 � � � aa�
T is the parameter vector.

In this manner, the estimation problem now becomes nonlinear even if the original system dynamics are linear due to
the nonlinear coupling of the states qðtÞ and _qðtÞ with a. If the parameters are constant ð _a ¼ ½0�Þ, then the system becomes

_zðtÞ ¼
_xðtÞ

_a

� �
¼

_qðtÞ

€qðtÞ

_a

2
64

3
75 (8a)

¼

_qðtÞ

�M�1KqðtÞ �M�1C _qðtÞ þM�1BuðtÞ

½0�

2
64

3
75 (8b)

9fðzðtÞ;uðtÞ; tÞ (8c)

yðtÞ ¼ HxðtÞ þ GuðtÞ (9a)

9hðzðtÞ;uðtÞ; tÞ (9b)

By discretising and linearising Eq. (8c) at time tk ðk ¼ 1;2; . . .Þ using first-order Taylor series expansion, the discrete-time
state space model is obtained:

zðkþ 1Þ ¼ AFzðkÞ þ Ū (10a)

where AF is the fundamental matrix at time tk which takes the form

AF ¼ eAf Dt
¼ Iþ AfDt þ ðAfDtÞ2=2!þ � � � ðDt ¼ tkþ1 � tkÞ (10b)

Ū ¼

Z tkþ1

tk

eAf ðtkþ1�tÞðfðzðkÞ;uðkÞÞ � Af zðkÞÞdt (10c)

and

Af ¼
qf

qz

�
z ¼ zðkÞ (10d)

¼

½0� I ½0� � � � ½0�

�M�1K �M�1C �M�1 qK

qa1
qðkÞ �M�1 qC

qa1
_qðkÞ � � � �M�1 qK

qaa
qðkÞ �M�1 qC

qaa
_qðkÞ

½0� ½0� ½0� � � � ½0�

2
6664

3
7775 (10e)

The measurement Eq. (9b) can be linearised and discretised in a similar way to obtain

yðkÞ ¼ HexzðkÞ þ V̄ (11a)

where Hex is called the measurement matrix and has the form

Hex ¼
qh

qz

�
z ¼ zðkÞ (11b)

¼ ½½H0; ½0�; ½0�� ðif yðtÞ ¼ H0qðtÞÞ (11c)

¼ ½½0�; H0; ½0�� ðif yðtÞ ¼ H0 _qðtÞÞ (11d)
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¼ �H0M�1K; �H0M�1C; �H0M�1 qK

qa
qðkÞ �H0M�1 qC

qa
_qðkÞ

� �
ðif yðtÞ ¼ H0 €qðtÞÞ (11e)

and

V̄ ¼ hðzðkÞ;uðkÞ; tkÞ �
qh

qz
zðkÞ (11f)

The preceding first-order Taylor expansions for the fundamental matrix AF and measurement matrix Hex only have to be
used in the computation of the Kalman gains. The old estimates that have to be propagated forward do not have to be
determined with the fundamental matrix but instead can be propagated directly by integrating the actual nonlinear
differential equations (i.e. Eq. (8c)) forward at each sampling interval.

zðkþ 1Þ ¼ jðzðkÞ;uðkÞ; tk; tkþ1Þ (12)

where jðzðkÞ;uðkÞ; tk; tkþ1Þ is realised by applying numerical integration methods to Eq. (8c).
The discrete process noise covariance matrix Q ex, the measurement noise covariance matrix Rex, and the initial

estimation error covariance matrix Pexð0Þ are still required to start the EKF algorithm. It will be shown how the continuous
process noise wðtÞ and the discrete measurement noise vðtÞ evolve to Q ex and Rex, respectively, and how Pexð0Þ is
determined.

Reconsider Eq. (1) and add process noise wðtÞ with constant covariance matrix Q s9E½wðtÞwTðtÞ�, then Eq. (1) becomes

M €qðtÞ þ C _qðtÞ þ KqðtÞ ¼ BuðtÞ þ LwðtÞ (13)

where L is the process noise matrix. Thus the corresponding Eq. (8c) becomes

_zðtÞ ¼ fðzðtÞ;uðtÞ; tÞ þwexsðtÞ (14a)

where wexsðtÞ is the continuous process noise for EKF

wexsðtÞ ¼

½0�

M�1LwðtÞ

½0�

2
64

3
75 (14b)

Directly calculating the covariance matrix of the process noise for the EKF in continuous form (denoted as Q exs) gives

Q exs ¼ E

½0�

M�1LwðtÞ

½0�

2
64

3
75½½0� ðM�1LwðtÞÞT ½0�� (15a)

¼

½0� ½0� ½0�

½0� M�1LQ sLTðM�1ÞT ½0�

½0� ½0� ½0�

2
64

3
75 (15b)

where Q s ¼ E½wðtÞwTðtÞ�, is the continuous covariance matrix of the process noise wðtÞ.
The discrete process noise covariance matrix thus becomes

Q exðkÞ ¼

Z Dt

0
eAf tQ exseðAf Þ

Tt
dt (16)

Moreover, when the EKF is applied in parameter estimation, the parameter vector a is treated as a random constant vector
such as

aðkþ 1Þ ¼ aðkÞ þwaðkÞ (17)

where waðkÞ is any zero-mean Gaussian white noise sequence uncorrelated with the process noise and with pre-assigned
positive definite variance VarðwaðkÞÞ ¼ ZaðkÞ. Thus, the discrete covariance matrix of the process noise for extended Kalman
filtering is modified from Eq. (16) to be

Q exðkÞ ¼

Z Dt

0
eAf tQ exseðAf Þ

Tt dtþ
½0� ½0�

½0� ZaðkÞ

" #
(18)

For the measurement noise, since the actual measurements are always sampled in discrete time steps, instead of starting
from continuous measurement noise vðtÞ and discretise it to vðkÞ, directly starting from the discrete measurement noise
vðkÞ, with constant covariance matrix R9E½vðkÞvTðkÞ�, on the measurement, Eq. (9a) becomes

yðkÞ ¼ HxðkÞ þ GuðtÞ þ vðkÞ (19a)

¼ hðzðkÞ;uðkÞ; kÞ þ vðkÞ (19b)
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From the above equation, the discrete measurement noise covariance matrix for the EKF is

Rex ¼ R (20)

In the case of the covariance matrix Pexð0Þ, which represents the initial errors in the state estimates of the EKF, it takes the
form

Pexð0Þ ¼
Pxx ½0�

½0� Paa

" #
(21)

where Pxx is the covariance matrix related with the estimate of the dynamic state variable (i.e. x̂), Paa is the part
corresponding to the parameters (i.e. â).

From this premise, all the information to start the EKF algorithm has been obtained.
The EKF equations can be grouped into the three stages:
Propagation:

ẑðkþ 1=kÞ ¼ jðẑðkÞ;uðkÞ; tk; tkþ1Þ (22a)

Pexðkþ 1=kÞ ¼ AFPexðkÞA
T
F þ Q exðkÞ (22b)

Measurement:

ŷðkþ 1=kÞ ¼ hðẑðkþ 1=kÞ;uðkþ 1Þ; tkþ1Þ (22c)

mðkþ 1Þ ¼ yðkþ 1Þ � ŷðkþ 1Þ (22d)

Sðkþ 1Þ ¼ HexPexðkþ 1=kÞHT
ex þ Rex (22e)

Correction:

Kgðkþ 1Þ ¼ Pexðkþ 1=kÞHT
exS�1

ðkþ 1Þ (22f)

ẑðkþ 1Þ ¼ ẑðkþ 1=kÞ þ Kgðkþ 1Þmðkþ 1Þ (22g)

Pexðkþ 1Þ ¼ Pexðkþ 1=kÞ � Kgðkþ 1ÞSðkþ 1ÞKT
g ðkþ 1Þ (22h)

where mðkþ 1Þ is called the measurement innovation, or the residual. The residual reflects the discrepancy between the
predicted measurement and the actual measurement. Sðkþ 1Þ, defined as Sðkþ 1Þ9Cov½mðkþ 1Þ� is the covariance matrix of
the residual mðkþ 1Þ.

The recursion starts with the initial values ẑð0Þ and the initial covariance matrix Pexð0Þ, which represents the initial
estimation error. Q ex reflects the model error and unknown inputs, while Rex describes the measurement noise.

The above traditional EKF method, when applied to the actual system identification, encountered many practical
problems:
(1)
 The order of the EKF based on FE model is 2nþ a (n: number of DOFs, a: number of unknown parameters) thus it
becomes very high even for a very simple structure. The computational effort of the Kalman filter (KF) or EKF is on the
order of n3. An EKF with high order suffers from long computational time and increased computational error, making
highly difficult for the filter to get the expected structural parameters.
(2)
 A large Pexð0Þ can cause the divergence of the EKF. Since normally it is difficult to obtain the variances of the initial
parameters, Pexð0Þ is often chosen as a diagonal matrix with very large values. In this case, divergence of the filter can
occur, especially for the increasingly complex EKF models.
(3)
 The initial values of the parameters to be estimated are also important for the EKF algorithm. Since the EKF is derived
using a linear model, a local minimum may be reached if the initial parameters are far from the actual ones. Normally,
the more accurate the initial values, the better results will be expected from the EKF.
(4)
 It is difficult to obtain accurate Q ex and Rex. The EKF assumes complete a-priori knowledge of the process and
measurement noise statistics, Q ex and Rex, respectively. Whilst they are often assumed to be constant matrices,
normally it is difficult to give accurate values to these two matrices. On the other hand, the statistics pair (Q ex and Rex)
play an important role in the EKF: they determine the bandwidth of the filter and thus affects the convergence and
stability of the parameter estimation of the EKF. A large Q ex or small Rex means a wide bandwidth. In this condition,
the filter can follow the state well provided good quantity and quality measurements. But the filter must pay the price
for it: by ignoring the model, the parameters (the very thing which is expected from the EKF) become insensitive to the
model thus they remain around their original values and reluctant to change. On the other hand, a small Q ex or large
Rex represents a small bandwidth of the filter, which makes the parameters sensitive to the residuals. Although
convergence speed is increased in this condition, in the presence of model structure error, the filter may not follow the
state thus the estimation of parameters becomes difficult as well because of the coupling relationship between state
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and parameters. Based on the discussion above, the pair ðQ ex;RexÞ is important for parameter estimation in EKF wh ile
accurate values are normally difficult to get.
3. Modified extended Kalman filter

To address the four problems above, the modifications to the EKF are used to make it more suitable for structural
identification. These modifications, each addressing one problem, will be presented in the following four sections.

3.1. Modal extended Kalman filter and system order reduction

Modal transformation provides an efficient way to reduce the order of the system and therefore has been widely
adopted in extended Kalman filters [8,9].

Instead of using actual displacement, velocity, and acceleration to construct the mechanical system (Eq. (1)), a new
variable vector is defined by modal transformation

q9Up (23)

where U9½u1 u2 � � � un� is the modal matrix constructed by the mass normalised eigenvectors which satisfy

UTMU ¼ I (24a)

UTKU ¼ K (24b)

with K ¼ diagðl1 l2 � � �lnÞ, where li ¼ o2
i is the ith eigenfrequency of the undamped system.

With the help of Eq. (23), Eq. (1) is changed to

€pþKpþC _p ¼ UTBu (25)

where C9UTCU. Assume modal damping, thus C takes the form of C ¼ diagðg1 g2 � � � gnÞ, where gi ¼ 2zioi is the ith
modal damping, and zi is the damping ratio of the ith mode.

The corresponding state space formulation has the same form with Eqs. (2a) and (2b), for simplicity recapitulate here

_xðtÞ ¼ AxðtÞ þ BeuðtÞ (26a)

yðtÞ ¼ HxðtÞ þ GuðtÞ (26b)

However, A,Be and x take the modal form

A ¼
½0� I

�K �C

� �
; Be ¼

½0�

UTB

" #
; x ¼

pðtÞ

_pðtÞ

" #
(27)

The corresponding EKF state space formulation becomes

_zðtÞ ¼
_xðtÞ

_a

� �
¼

_pðtÞ

€pðtÞ

_a

2
64

3
75 (28a)

¼

_pðtÞ

�KpðtÞ � C _pðtÞ þUTBuðtÞ

0½ �

2
64

3
75 (28b)

9fðzðtÞ;uðtÞ; tÞ (28c)

yðtÞ ¼ HzðtÞ þ GuðtÞ (29a)

9hðzðtÞ;uðtÞ; tÞ (29b)

The fundamental matrix of the EKF is obtained by discretising and linearising Eq. (28c) at time tk:

AF ¼ eAf Dt
¼ Iþ AfDt þ ðAfDtÞ2=2!þ . . . ðDt ¼ tkþ1 � tkÞ (30a)

where

Af ¼
qf

qz

�
z ¼ zðkÞ ¼

qf

qp

qf

q _p
qf

qa

� �
(30b)
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¼

½0� I ½0� � � � ½0�

�K �C �
qK
qa1

p�
qC
qa1

_pþ
qU
qa1

� �T

Bu � � � �
qK
qaa

p�
qC
qaa

_pþ
qU
qaa

� �T

Bu

½0� ½0� ½0� � � � ½0�

2
6664

3
7775 (30c)

where
1. qK=qaj is the sensitivity of the eigenvalue matrix to the parameter aj:

qK
qaj
¼ diag

ql1

qaj

ql2

qaj
� � �

qln

qaj

 !
(31a)

The ith diagonal entry is the rate of the ith system eigenvalue to the jth updating parameter

qli

qaj
¼ UT

i
qK

qaj
� li

qM

qaj

 !
Ui (31b)

2. qU=qaj is the sensitivity of the eigenvector matrix to the parameter aj:

qU
qaj
¼

qu1

qaj

qu2

qaj
� � �

qun

qaj

" #
(32a)

The ith term in the matrix is the rate of the ith system eigenvector to the jth updating parameter, which was determined by
[10]:

qui

qaj
¼ UCij ¼ ½u1 u2 � � � un�

Cijð1Þ

Cijð2Þ

..

.

CijðnÞ

2
666664

3
777775 (32b)

where the kth coefficient CijðkÞ is

CijðkÞ ¼

�uT
k

qK

qaj
� li

qM

qaj

 !
ui

lk � li
ðkaiÞ (32c)

CijðkÞ ¼ �
1

2
/T

k
qM

qaj
ui ðk ¼ iÞ (32d)

3. qC=qaj is the sensitivity of the damping matrix to the parameter aj, for a uniform damping,
C ¼ 2z � diagðo1 o2 � � � onÞ ¼ 2z

ffiffiffiffi
K
p

, thus

qC
qaj
¼ 2

qz
qaj

ffiffiffiffi
K
p
þ zK�1=2 qK

qaj
(33a)

Normally, when z is one of the parameters to be estimated, then

qC
qaj
¼ 2

ffiffiffiffi
K
p

(33b)

For other parameters except z

qC
qaj
¼ zK�1=2 qK

qaj
(33c)

Likewise, the measurement matrix Hex in the EKF is

Hex ¼
qh

qz

�
z ¼ zðkÞ (34a)

¼ H0U; ½0�; H0
qU
qa

pðkÞ

� �
ðif yðtÞ ¼ H0qðtÞÞ (34b)

¼ ½0�; H0U; H0
qU
qa

_pðkÞ

� �
ðif yðtÞ ¼ H0 _qðtÞÞ (34c)
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Q exðkÞ and Rex are redefined as

Q exðkÞ ¼

Z Dt

0
eAf tQ exseðAf Þ

Tt dtþ
½0� ½0�

½0� SðkÞ

" #
(35a)

where

Q exs ¼

½0� ½0� ½0�

½0� UTLQ sLTU ½0�

½0� ½0� ½0�

2
64

3
75 (35b)

and

Rex ¼ R (36)

Pexð0Þ has the same form as defined in Eq. (21). However, since the dynamic part of state vector (i.e. x) has changed to be in
modal coordinates, the current Pxx (denoted as Pmod

xx ) has the following relationship with the previous one (i.e. Pxx in
normal coordinate, denoted as Pnor

xx )

Pnor
xx ¼ UPmod

xx UT (37)

The modal EKF has more flexibility and thus can be used in model reduction.
For example, if only the first r modes are excited, then ðprþ1 prþ2 � � � pnÞ, ð _prþ1 _prþ2 � � � _pnÞ and ð €prþ1 €prþ2 � � � €pnÞ

can be neglected, without losing any generality, here assuming displacement measurements, it results:

y ¼ H0Up ¼ H0½u1 � � � ur � � �un�

p1

..

.

pr

..

.

pn

2
666666664

3
777777775

(38a)

¼ H0½u1 � � � ur

p1

..

.

pr

2
664

3
775 (38b)

The original Eq. (28) and (29) can be written as reduced EKF state space formulations:

_zrðtÞ ¼
_xrðtÞ

_a

� �
¼

_prðtÞ

€prðtÞ

_a

2
64

3
75 (39a)

¼

_prðtÞ

�KrprðtÞ � Cr _prðtÞ þUT
r BuðtÞ

½0�

2
64

3
75 (39b)

9frðzrðtÞ;uðtÞ; tÞ (39c)

yðtÞ ¼ HexrzrðtÞ (40)

where

pr9½p1 p2 � � � pr �
T (41a)

Kr ¼ diagðo2
1 o2

2 � � � o
2
r Þ (41b)

Cr ¼ diagðg1 g2 � � � grÞ (41c)

Ur9½u1 u2 � � � ur� (41d)

Hexr ¼ ½H0Ur ½0� ½0�� (41e)

The fundamental matrix, the measurement matrix and related covariance matrices are determined in the similar way.
Now the order of the system has decreased from 2nþ a (n: number of degree of freedom of the system, a: number of

parameters to be estimated) to 2r þ a (r: modes included in the model). Thus the computation time is highly decreased.



ARTICLE IN PRESS

X. Liu et al. / Journal of Sound and Vibration 325 (2009) 1023–10461032
3.2. Multiple model EKF based on different initial estimation covariance Pexð0Þ

The idea of multiple model EKF came from the ‘multiple model adaptive estimator’ [11]. This scheme consists of a bank
of parallel Kalman filters, each with a different model, and a hypothesis testing algorithm as shown in Fig. 1.

The internal models in the Kalman filters can be represented by discrete values in a parameter vector ðai; i ¼ 1;2 . . .NÞ.
The Kalman filters are provided with a measurement vector (y) and the input vector (u), and produce a state estimate ðx̂i

Þ

and a residual ðmiÞ. Here the superscript i corresponds to the ith EKF in the bank. The hypothesis testing algorithm uses the
residuals to compute conditional probabilities ðPriÞ of the various hypotheses that are modelled in the Kalman filters.

At each recursive step the adaptive filter carries out three tasks:
1.
 each filter in the bank of filters computes its own estimate, which is based on its own model;

2.
 the system computes the posterior probabilities for each of the hypotheses; and

3.
 the scheme forms the adaptive optimal estimate of state variable vector as a weighted sum of the estimates produced by

each of the individual Kalman filters.

As measurements evolve with time, the adaptive scheme learns which of the filters is the correct one, and its weight factor
approaches unity while the others converge to zero. The filter who ‘wins’ is the correct model.

Although MMAE finds many applications, for example, in flight control failure [12,13] etc., some drawbacks must be
overcome before it can be applied to mechanical structure damage detection.
1.
 It is assumed that the model which could describe the actual system is contained in the bank of Kalman filters. Although
this is possible when the system has been well-defined and damage always occurs in a few certain locations, it is
difficult to include the true model for a mechanical structure where damage could happen (even simultaneously) in
many places. In this case, the number of Kalman filters in the bank is unmanageably large.
2.
 The hypothesis testing algorithm determines that only one filter will be finally selected as the ‘correct’ one. Thus the
information from other filters in the bank is totally discarded. From the optimal point of view, although not as good as
the optimal filter, the other filters still contain information (more or less) that would be useful for the estimation result.

Based on the discussion above, the MMAE method has been revised to be applied to the damage detection of mechanical
structures. Fritzen proposed a scheme of MMAE to identify the cracks in a structure [9]. In his method, each of the filters
represents a model with one special location of crack. The depth of the crack is an additional free parameter which also has
to be identified. The proposed method, in essence, helps to improve the EKF estimation results by decreasing the number of
parameters to be identified (in this case, only one parameter for each EKF). However, when two cracks happen
simultaneously, the number of EKF in the bank must be increased.
Kalman Filter
based on model 1

Kalman Filter
based on model 2

Kalman Filter
based on model 3

Kalman Filter
based on model N

Hypothesis Testing
Algorithm

Σ

α
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ν
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x
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Fig. 1. Traditional MMAE method.
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As was mentioned before, Pexð0Þ is the covariance matrix representing initial errors of the state estimate
vector ẑðtÞ

ẑðtÞ ¼
x̂ðtÞ

âðtÞ

" # !
.

Pexð0Þ, especially the lower part corresponding to the parameters (i.e. Paað0Þ), plays a crucial role in the parameter
estimation. A large Pexð0Þ normally accompanies higher speed of estimation convergence, while at the price of lower
stability. A small Pexð0Þ increases the stability of convergence while convergence becomes very slow. Since Pexð0Þ
is important for the estimation while difficult to obtain, the Pexð0Þ-based EKF MMAE scheme takes the form as shown in
Fig. 2.

Each filter in the bank is a modal-based EKF, but starts from different Pexð0Þ. The estimate result (i.e. âi) from each EKF is
used to construct the following Kalman filter which only estimates xðtÞ. The residuals of each KF is used to evaluate the
model of KF itself, (i.e. the validity of âi). Thus, the information of all the Kalman filters in the bank was incorporated based
on some criteria, and the optimal âopt is given as the final estimation result.

The hypotheses testing algorithm in the scheme is based on the statistical tests for filter consistency, which is described
by the following criteria [14]:
1.
 the state errors should be acceptable as zero mean and have magnitude commensurate with the state covariance as
yielded by the filter;
2.
 the residuals should also have the same property; and

3.
 the residuals should be acceptable as white.

The last two criteria are the only ones that can be tested in real data applications, and can be further quantified by the
following two criteria:
1.
 under the hypothesis that the filter is consistent, the time-averaged normalised innovation squared (TANIS)

�̂n ¼
1

K

XK
k¼1

mTðkÞSðkÞmðkÞ (42)
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Modal KF
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Fig. 2. Scheme of a modified multiple model MOKF.
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has a chi-square distribution with nz DOF, where mðkÞ is the residual of the Kalman filter, SðkÞ is the corresponding
covariance matrix, nz is the dimension of the measurement.
1.
 the whiteness test statistic for residuals l steps apart from a single run can be written as time-average autocorrelation
(TAAU)

r̂ðlÞ ¼
PK

k¼1m
TðkÞmðkþ lÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1mTðkÞmðkÞ
PK

k¼1mTðkþ lÞmðkþ lÞ
q (43)

This statistics is, for large enough K, in view of the central limit theorem, normally distributed. Furthermore, it has zero
mean and covariance 1/K.

Here, the first-order statistic properties (i.e. mean) of random variable �̂n and r̂ðlÞ are tested. Since �̂n is a chi-square
distribution with nz DOF, the mean of �̂n is nz; r̂ðlÞ is a normally distributed variable with zero mean, thus the mean of r̂ðlÞ is
zero.

Based on the discussion above, the probability of the ith Kalman filter is defined by

Pri ¼
1

Ji

,XN
j¼1

1

Jj
(44a)

where N is the number of filters in the bank, Ji is the cost function of the ith Kalman filter with the form

Ji ¼ ð�̂i
n � nzÞ

2 þwf ðr̂
i
ðlÞÞ2 (44b)

where �̂i
n, r̂i are the statistic properties from the ith Kalman filter determined according to Eq. (42) and Eq. (43), wf is a

weighting factor which balances the two criteria.
Subsequently, the optimal parameters estimated by the whole bank of EKF are determined by

âopt ¼
XN
i¼1

Priâi (45)

3.3. Weighted global iterative method in MOKF

The weighted global iterative method for the extended Kalman filter (EK-WGI) was first proposed by Hoshiya and Saito
[15,16], which comprises the following steps [17] and is shown in Fig. 3:
1.
 Supply the a-priori estimates ẑð0Þ, Pexð0Þ.

2.
 Use the extended Kalman filter and find at the end of n time steps, the updated state vector, ẑðn=nÞ, Pexðn=nÞ.

3.
 Weight the final updated covariance from step 2 and use them as new a-priori estimates for iteration. For instance, after

i iterations, the i+1 iteration will start with the new a-priori estimates as follows:

ẑiþ1
ð0Þ ¼

x̂0
ð0Þ

âi
ðn=nÞ

2
4

3
5 (46a)

Piþ1
ex ð0Þ ¼

P0
xxð0Þ Pxað0Þ ¼ 0½ �

Paxð0Þ ¼ 0½ � W � Pi
aaðn=nÞ

2
4

3
5 (46b)

where the superscripts 0, i and i+1 corresponds to the iteration number. In other words, only the state and error
covariance associated with parameters to be identified are updated.
4.
 Repeat until the parameters can no longer be improved or a local minimum identification error has been achieved.

The method described above can also be used in different sets of data in a consecutive way, which is shown in Fig. 4.
The EK-WGI method, in essence, is based on the following two facts:
1.
 The physical parameters to be estimated by the EKF are stationary. The parameters are normally improved after one
iteration, thus using the parameters from the previous iteration to start a new one will hopefully further improve the
estimation result even using the same set of I/O data.
2.
 The weight factor W is used to increase Pexð0Þ thus to accelerate the convergence at the beginning of the new iteration.
There are so far no guidelines on the choice of W except that it should be greater than 1. In their application, Hoshiya and
Saito used W ¼ 100.
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The multiple model MOKF scheme described in Section 3.2 is revised to incorporate EK-WGI method, as shown in Fig. 5.
Here the superscript i corresponds to the ith MOKF in the bank. Not only the parameters âi estimated from each filter in

the bank, but also the initial error covariance matrix Pi
exð0Þ are incorporated at the end of one iteration. The optimal

âoptand Popt
ex ð0Þ are determined by

âopt
¼
XN
i¼1

Priâi (47a)

Popt
ex ð0Þ ¼

XN
i¼1

PriPi
exð0Þ (47b)

Before the new iteration starts, âi
ð0Þ and Pi

exð0Þ are assigned to each filters in the bank according to

âi
ð0Þ ¼ âopt (48a)

Pi
exð0Þ ¼

Pxxð0Þ ½0�

½0� Popt
aa ð0Þ þ dPi

" #
(48b)

where dPi (i ¼ 1,y,N) normally takes the form

dPi ¼
2

N � 1
i�

N þ 1

2

� �
PR (48c)

where PR is the range that the bank of EKF can cover.
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For example, for the first filter in the bank (i ¼ 1), dPi ¼ �PR; for the last filter in the bank (i ¼ N), dPi ¼ PR; for the filter
in the middle and assume an odd N, ði ¼ ðN þ 1Þ=2Þ, dPi ¼ ½0�). The others dPi evenly separated between �PR and PR. It is
obvious that, according to Eq. (48c), in each new iteration, the estimate error covariance Pexð0Þ of all the filters in the bank
will be evenly separated with centre of optimal Popt

aa ð0Þ from pervious iteration and the variation of PR.
One remaining issue which should be noticed is the iteration number. By iterating, it is being implicitly assumed that

the measured data are trustworthy. In the case when the measurement data contain system error or large noise, the
identified parameters will inevitably deviate from their true values and moreover, divergence may occur after several
iterations. Therefore, it would be suggested by the authors that filter consistency should be checked in each iteration and
once the KF in current iteration is found to be less consistent than the previous one (according to Eqs. (42) and (43)), the
whole process should be stopped and the identification result from the previous iteration is adopted.

So far, some solutions to the first two questions proposed at the end of Section 2.2 are provided, the last one will be
answered in the next section.

3.4. Fuzzy logic-based adaptive Kalman Filter in mechanical structures

In the context of the standard EKF algorithm the measurement noise covariance matrix RðkÞ represents the accuracy of
the measurement instrument (note: since Rex ¼ R, R is used in this section for simplicity). Thus, the enlargement of the
covariance matrix RðkÞ for measured data means that less trust is put on this measured data and more faith is put on the
prediction. Assuming that the process noise covariance matrix Q exðkÞ is completely known, in this section an algorithm
employing the principles of fuzzy logic is derived to adaptively adjust the matrix RðkÞ. In the Kalman filter literature, there
are reported some approaches to do this task, e.g. [18]. But in this work, the approach described in this section is adopted.
For simplicity, it is assumed that the measurement noise covariance matrix RðkÞ is restricted to be a diagonal matrix whose
elements represent the variances of the individual components of the measurement noise vector vðkÞ, this is

RðkÞ ¼ diagðRðkÞð1;1Þ RðkÞð2;2Þ � � � RðkÞðm;mÞÞ (49)

subject to RðkÞði;iÞ40 (i ¼ 1,y,m). Therefore, the tuning of RðkÞ reduces to tuning its m diagonal elements (recall that m is
the dimension of the measurement vector). In the fuzzy logic-based adaptive Kalman filter (FL-AKF) this is achieved as
follows. For an optimal filter, the residual sequence mðkÞ is a combination of independent Gaussian random variables. As a
result, the residual sequence also is a Gaussian white random sequence with zero mean and theoretic covariance from Eq.
(50):

Sðkþ 1Þ ¼ HexPexðkþ 1=kÞHT
ex þ RðkÞ (50)

Therefore, if it is noted that the theoretical residual covariance SðkÞ has discrepancies with its actual value ĈrðkÞ which is
defined by

ĈrðkÞ ¼
1

WS

Xk

i¼i0

mðiÞmðiÞT (51)

where i0 ¼ k�WSþ 1 is the first sample inside a sliding window whose size WS is chosen empirically to give some
statistical smoothing, then a fuzzy inference system (FIS) derives adjustments for RðkÞ based on the knowledge of the size
of this discrepancy. The objective of these adjustments is to correct this mismatch as much as possible and, in this way,
maintain the consistency between the theoretical and actual residual statistics.

In order to detect and monitor the size of the discrepancy between SðkÞ and its actual value ĈrðkÞ, a new variable called
the degree of mismatch (referred to as DoMðkÞ) is defined as:

DoMðkÞ ¼ SðkÞ � ĈrðkÞ (52)

In qualitative terms, the logic of the adaptation algorithm implemented by a FIS can be described as follows. From
Eq. (50) it is clear that the value of SðkÞ depends directly on the value of RðkÞ. This means that an increment in RðkÞ will
increment SðkÞ and vice versa. Thus, RðkÞ can be used to vary SðkÞ in accordance with the value of DoMðkÞ in order to reduce
the discrepancies between SðkÞ and ĈrðkÞ. Note that all matrices SðkÞ, ĈrðkÞ, RðkÞ and DoMðkÞ have the same dimension
m�m. Therefore, the diagonal elements of RðkÞ can be adapted in accordance with the diagonal elements of DoMðkÞ. This
is, if the actual residual covariance value ĈrðkÞði;iÞ is observed, whose value is within the range predicted by theory SðkÞði;iÞ,
then DoMðkÞði;iÞ will be near to zero indicating that both covariance values match almost perfectly, and then no changes to
RðkÞði;iÞ are needed. If the actual residual covariance ĈrðkÞði;iÞ is less than its predicted theoretic value SðkÞði;iÞ, then DoMðkÞði;iÞ
will be greater than zero, and then RðkÞði;iÞ needs to be decreased to compensate this positive mismatch. Conversely, if the
actual residual covariance ĈrðkÞði;iÞ is greater than its predicted theoretic value SðkÞði;iÞ, then DoMðkÞði;iÞ will be less than zero,
and then RðkÞði;iÞ needs to be increased to compensate this negative mismatch. The previous adjusting mechanism lends
itself very well to being dealt with using a fuzzy logic approach based on rules of the kind ‘IF x is Aj THEN y is Bj‘, where x

and y are linguistic variables in the universes of discourse U and V; Aj and Bj are linguistic values (fuzzy sets) of the
linguistic variables x and y, characterised by the membership functions mAj

ðxÞ and mBj
ðyÞ, respectively.
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Hence, a single-input-single-output (SISO) FIS can be implemented to sequentially generate the tuning or correction
factors for the diagonal elements of RðkÞ. First define DoMðkÞði;iÞ as the FIS linguistic input variable and DRðkÞ, the adjusting
factor for RðkÞði;iÞ, as the FIS linguistic output variable. Next, define three fuzzy sets for DoMðkÞði;iÞ: N ¼ Negative, ZE ¼ Zero,
and P ¼ Positive, describing the degree of mismatch; and three fuzzy sets for DRðkÞ: I ¼ increase, M ¼ maintain, and
D ¼ decrease, describing the action or correction to be taken. Different membership functions may be considered to define
the fuzzy sets of the FIS input and output linguistic variables. However, from simulation studies of different processes it
was found that triangular membership functions are sufficient for this task. Therefore, the fuzzy sets for both linguistic
variables are defined as shown in Fig. 6. There, the parameters a and b can be selected in accordance with the knowledge
available about the system at hand. For example, if there is knowledge about the maximum possible value that the
measurement noise variances can take, then this value can be used to determine the parameter a. In the problems at hand,
from experimentation it was observed that good results were obtained by defining a ¼ 1e� 4 (maximum possible
measurement noise covariance value). The parameter b, which defines the maximum size of adjustment, can be selected as
a percentage of a, for example 5% empirically demonstrated to produce smooth adjustments. If nothing is known about the
measurement noise statistics, then the parameters a and b can be initially guessed and further adjusted based on
simulation results.

Therefore, only three fuzzy rules are required to complete the FIS rule base:
�
 Rule 1. If DoMðkÞði;iÞ ¼ P, then DRðkÞ ¼ D.

�
 Rule 2. If DoMðkÞði;iÞ ¼ ZE, then DRðkÞ ¼ M.

�
 Rule 3. If DoMðkÞði;iÞ ¼ N, then DRðkÞ ¼ I.
Hence, using the compositional rule of inference sum-prod and the centre of area (COA) defuzzification method, the
adjusting factor for the diagonal elements of RðkÞ, are calculated by

DRðkÞ ¼
mPðDoMðkÞði;iÞÞmD þ mZEðDoMðkÞði;iÞÞmM þ mNðDoMðkÞði;iÞÞmI

mPðDoMðkÞði;iÞÞ þ mZEðDoMðkÞði;iÞÞ þ mNðDoMðkÞði;iÞÞ
(53)
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Finally, the adjustment of RðkÞ is carried out by cyclically applying

RðkÞði;iÞ ¼ Rðk� 1Þði;iÞ þ DRðkÞ (54)

A graphical representation of this adjusting process is shown in Fig. 7. The algorithm starts by assigning an initial value to
Rð0Þði;iÞ. Usually, an initial estimate of the measurement noise variances can be determined by observing raw
measurements in a stationary situation. However, if this is not possible, then Rð0Þði;iÞ can be assigned a value in function
of the process noise covariance, e.g. Rð0Þði;iÞ ¼ qw, where qw is the maximum process noise covariance component in Q exðkÞ.

As an alternative to a sequential implementation, the adaptation algorithm can be implemented in two additional ways.
In the first alternative, m parallel SISO FISs can be considered in order to adapt simultaneously all the diagonal elements of
RðkÞ, as is graphically represented in Fig. 8. In the second alternative, a multiple-input-multiple-output (MIMO) FIS with
3�m rules in the rule base can be used to adjust at once all the diagonal elements of RðkÞ. This last alternative is
graphically represented in Fig. 9. The use of any of these three ways of implementation: sequential, parallel or MIMO,
depends on the computational resources and the problem at hand.

Thus, finally, by incorporating the fuzzy logic-based block into the EKF model, the final algorithm denoted as MMAE-
WGI-FL MOKF method is shown in Fig. 10.
4. Applications of the proposed MMAE-WGI-FL MOKF method

4.1. The MMAE-WGI-FL MOKF method applied to simulated data

As an illustration, Fig. 11 shows a typical beam member, AB, with 6 elements. The structural member is discretised into a
number of finite elements. The number of elements depends on the required resolution of damage identification. It is
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assumed that damage would result in stiffness reduction (the change in EI value). Hence, if the beam stiffness can be
identified before and after damage, then it may be possible to deduce the damage location and even the severity of damage.

Assuming the cantilever beam shown in Fig. 11 has 6 beam elements and imposed uniform modal damping. The parameters to
be estimated are the ratio of the damaged stiffness value to the undamaged value for all 6 elements, plus one damping ratio z:

a ¼
ðEIÞD1
ðEIÞU1

� � �
ðEIÞD6
ðEIÞU6

z

" #T

(55a)
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9½a1 � � � a6 z�T (55b)

where superscript U denotes undamaged (or original) condition and superscript D denotes damaged (or changed) condition. Since
damage is assumed to result in corresponding change in stiffness parameters, ai (i ¼ 1,y,6) is below 1 if damage takes place. The
two extreme values are 1 denoting no damage at all and 0 denoting complete damage.

In a numerical simulation study, the dynamic response is simulated. Since in reality, it is difficult to obtain full
measurements for all the DOFs in the finite element model, particularly for rotational DOFs. Here only translational
displacements from the five nodes are simulated.

To achieve wideband response for better identification, band-limited white Gaussian random noise is used as the input
signal. The reason for this kind of input lies in the two facts below:
1.
Tab
Par

Par

Len

Sec

Den

You

Inte

Dam

Noi

Tab
Init

Init

a1(

a2(

a3(

z(0

Init

Init
The source that drives the parameter estimation in the EKF is the fundamental matrix AF. From Eq. (30), it can be seen
that for the identification of parameters, it is desirable to have a large eigen-sensitivity to parameters to be estimated.
Thus, theoretically, the more modes are excited, the better the parameter estimation will be. Thus, white Gaussian
random noise is preferred.
2.
 However, considering the reduced MOKF proposed in Section 3.1, it is based on the assumption that only the first r

modes are excited. Therefore, instead of using a random input and a low pass filter on the output (which violate the
linear relationship between input and output), a band-limited white noise is adopted as the input to excite the system.
By doing this and assuming the linearity of the system, the spectrum of the output will be confined within the range of
certain modes. From a computational point of view, the fewer modes included, the less computation load. However, as
was mentioned just now, from identification point of view, the more the modes are included, the better. Thus a balance
needs to be found between identification results and computation load.

The clean signal of the dynamic response (output) of the beam is computed numerically using the Trapezoidal Rule for
numerical integration. To account for the effects of I/O noise, both input and output clean signals are artificially
contaminated with zero-mean Gaussian white noise.

Local damage of 30%, 10% and 20% are assumed to take place at element 1, 2, 3, respectively, and the corresponding
integrity index is 0.7, 0.9, 0.8. The input and output are sampled at 10 kHz for 5000 points per set. The related parameters
for the system are presented in Table 1.

The modified EKF method adopted in this study includes 3 extended Kalman filters. The initial parameters set for the 3
filters in the bank are presented in Table 2. The effectiveness of proposed method is presented by Tables 3, 4, 5 and Fig. 12.
It’s clear that the residuals are getting better with iterations going on, and the estimation results converged to the actual
ones. The problems proposed in Section 2.2 have been solved, respectively:
1.
 By using modal equation instead of normal dynamic equation, the computational effort is decreased from the order of
ð2nþ aÞ3 to ð2r þ aÞ3 (n: the number of DOFs, a: the number of unknown parameters, r: the number of modes included).
le 1
ameters used in simulation.

ameters Value

gth (mm) 900

tional area (mm�mm) 25.45�6.47

sity (kg/m3) 2700

ng’s modulus (GP) 70

grity index a1 a2 a3 0.7 0.9 0.8

ping ratio z 5e�3

se on measurement Ri,i(0) (i ¼ 1y6) 1e�8

le 2
ial parameters for the three filters.

ial para First filter Second filter Third filter

0) 1 1 1

0) 1 1 1

0) 1 1 1

) 1e�3 1e�3 1e�3

ial Pexi,i(0) (i ¼ 7y10) 1e�4 3e�4 5e�4

ial Ri,i(0) (i ¼ 1y6) 5e�6 5e�6 5e�6
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Table 3
Identification results after the first iteration.

Estimated Para Exact value First filter Second filter Third filter

a1 0.7 0.7200 0.6944 0.7079

a2 0.9 0.9617 0.9417 0.8669

a3 0.8 0.7501 0.7188 0.7515

z 0.005 0.0554 0.0082 0.0054

TANIS 1.9397 0.7619 0.5756

TAAU �0.2728 �0.1712 �0.0720

Probability 0.1913 0.3064 0.5024

Optimal para

a1 0.7061

a2 0.9080

a3 0.7412

z 0.01578

Optimal Pexi,i (i ¼ 7y10) 6.746691e�4

Optimal Ri,i (i ¼ 1y3) 5.506191e�008 5.588902e�008 5.580108e�008

Optimal Ri,i (i ¼ 4y6) 5.490538e�008 5.424910e�008 5.753701e�008

Table 4
Identification results after the second iteration.

Estimated para Exact value First filter Second filter Third filter

a1 0.7 0.7053 0.6892 0.7091

a2 0.9 0.8816 0.9511 0.8634

a3 0.8 0.8002 0.8038 0.7982

z 0.005 0.0036 0.0044 0.0039

TANIS 5.7982 5.9127 5.8565

TAAU �0.0127 �0.0295 �0.0145

Probability 0.4740 0.1091 0.4168

Optimal para

a1 0.7051

a2 0.8816

a3 0.7997

z 0.00381

Optimal Pexi,i (i ¼ 7y10) 6.669537e�004

Optimal Ri,i (i ¼ 1y3) 1.045916e�008 1.030602e�008 1.031147e�008

Optimal Ri,i (i ¼ 4y6) 9.828832e�009 9.983579e�009 1.046926e�008

Table 5
Identification results after the third iteration.

Estimated para Exact value First filter Second filter Third filter

a1 0.7 0.6965 0.7055 0.6922

a2 0.9 0.9125 0.8778 0.9345

a3 0.8 0.8023 0.7973 0.8036

z 0.005 0.0047 0.0050 0.0047

TANIS 6.1197 6.1604 6.1973

TAAU �0.0129 �0.0132 �0.0217

Probability 0.4436 0.3993 0.1572

Optimal para

a1 0.6994

a2 0.9021

a3 0.8005

z 0.00483

Optimal Pexi,i (i ¼ 7y10) 6.287487e�004

Optimal Ri,i (i ¼ 1y3) 1.019385e�008 1.000552e�008 1.015951e�008

Optimal Ri,i (i ¼ 4y6) 9.592652e�009 9.815434e�009 1.016976e�008
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2.
 By using multiple EKF with different Pexð0Þ, the estimation process becomes more robust and information of all 3 filters
is incorporated.
3.
 The estimation results are improved with each iteration thus demonstrating the effect of WGI method.

4.
 The fuzzy logic model can estimate R with a very rough initial estimation, and still converge to the actual value. The

correct R helps the estimation of parameters.
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Fig. 12. Iterations: (a) results from the first iteration 1, (b) results from the second iteration and (c) results from the third iteration.
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4.2. The MMAE-WGI-FL MOKF method applied to experimental data

In this research, an experimental study involving shaker-excited vibration tests of an aluminium cantilever beam was
carried out in the laboratory as shown in Fig. 13. Zero-mean band-limited Gaussian white noise was used as the input signal
to the shaker. A force transducer (23 g) was screwed on the bottom surface of the beam. Six accelerometers (7 g each) were
screwed to the top surface along the centreline at selected positions that corresponded to the nodes in the finite element
model described in Section 4.1.

The signals from the force transducer and accelerometers were fed into a DSpace acquisition and control system [19].
Experimental data were acquired at 10 kHz for 0.5 s. Instead of integrating acceleration to derive the velocities and
displacements, acceleration signals were directly used as the measurement data. The reason for doing that is
1.
 Integration and double integration accompany loss of formation and the results drift significantly from the actual values
if accelerations are noisy or have spurious mean.
2.
 In order to avoid the spurious mean level and drift due to the integration, normally a band pass filter is employed.
However, after this process, white noise in accelerations after integration becomes non-white in the velocities and
displacements. This would violate one basic requirement of the Kalman filter that noises in the observations be white.
3.
 The big difference between the spectrum of the displacement measurement and acceleration measurement is the
percentage of higher modes spectrum. The higher modes are clearly displayed in the accelerations while not in the
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Fig. 13. Experiment setup.

Table 6
Identification results for the first experiment.

Initial para First filter Second filter Third filter

Initial parameters for the three filters in experiment 1

a1(0) 1 1 1

a2(0) 1 1 1

a3(0) 1 1 1

Initial Pexi,i(0) (i ¼ 7y10) 1e�4 3e�4 5e�4

Initial Ri,i(0) (i ¼ 1y6) 1 1 1

Estimated para Exact value First filter Second filter Third filter

Identification results after the first iteration

a1 1.0 0.9496 1.0110 0.9241

a2 4.3 3.5096 3.8776 4.0099

a3 1.0 1.7348 1.6657 1.5909

Probability 0.3065 0.3129 0.3805

Optimal para

a1 0.9591

a2 3.8151

a3 1.6584

Estimated para Exact value First filter Second filter Third filter

Identification results after the second iteration

a1 1.0 0.9359 0.9402 0.8742

a2 4.3 4.2249 4.3098 4.6051

a3 1.0 1.5326 1.5141 1.4183

Probability 0.3230 0.3310 0.3460

Optimal para

a1 0.9160

a2 4.3845

a3 1.4869

X. Liu et al. / Journal of Sound and Vibration 325 (2009) 1023–10461044
displacements. Those higher modes are normally more sensitive to the local damage thus more preferable for the
identification purpose.

The finite element model used to describe the cantilever beam includes 12 beam elements. Since the weight of force
transducer and accelerometers can not be neglected compared with the beam itself, each sensor is modelled as a lumped
mass in the finite element model. In addition, since many holes are drilled for the sensors setup, the original density has
been re-measured and the EI values of the undamaged beam were first identified.

Damage of the cantilevered beam was created in a different way in the experimental study: by adding a lumped mass
(23 g) under some certain locations (under one of six accelerometers). The aim was to demonstrate whether the proposed
identification strategy can detect the change in the lumped mass and its location.
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Table 7
Identification results for the second experiment.

Initial para First filter Second filter Third filter

Initial parameters for the three filters in experiment 2

a1(0) 1 1 1

a2(0) 1 1 1

a3(0) 1 1 1

Initial Pexi,i(0) (i ¼ 7y10) 1e�5 3e�5 5e�5

Initial Ri,i(0) (i ¼ 1y6) 1 1 1

Estimated Para Exact value First filter Second filter Third filter

Identification results after the first iteration

a1 1.0 1.1253 1.0935 1.6478

a2 1.0 1.3462 2.4136 0.9952

a3 4.3 1.6449 1.8348 1.4087

Probability 0.3324 0.4442 0.2235

Optimal para

a1 1.2279

a2 1.2977

a3 1.6765

Estimated para Exact value First filter Second filter Third filter

Identification results after the second iteration

a1 1.0 1.3657 1.0043 1.0333

a2 1.0 1.0962 1.2100 1.3106

a3 4.3 1.9947 2.2372 1.9753

Probability 0.2730 0.4474 0.2797

Optimal para

a1 1.1111

a2 1.2071

a3 2.0978

X. Liu et al. / Journal of Sound and Vibration 325 (2009) 1023–1046 1045
In the first experiment, the lumped mass was put under the second sensor (node2). Here, ‘damage’ is assumed only
happened under the node1, node2, and node3. Thus the parameters to be estimated are a1, a2, a3 (the ratio of the changed
mass value to the original mass value under the node1, node2, node3, respectively) and damping ratio z. Thus the true
parameter values are: a1 ¼1, a2 ¼ 4.3, a3 ¼ 1.

The initial parameters for the filters and estimation results for the first experiment are presented in Table 6. For
comparison, the sensitivity based frequency model updating method [4] is also used for the same data, but the whole time
series data is used (10 s). The frequency domain updating results are a1 ¼ 0.9923, a2 ¼ 2.9140, a3 ¼ 0.9001.

In the second experiment, the lumped mass is put under the 6th sensor and ‘damage’ is assumed only happened under
the node4, node5, and node6. a1, a2, a3 become the ratio of the changed mass value to the original mass value under the
node4, node5, node6, respectively. Thus the true values are a1 ¼ 1, a2 ¼ 1, a3 ¼ 4.3.

The initial parameters for the filters and estimation results for the second experiment are presented in Table 7. Similarly,
for comparison, the frequency domain updating results are a1 ¼ 1.4236, a2 ¼ 1.4013, a3 ¼ 2.5496.

Note that the estimated parameters are not strictly equivalent to the theoretical values. This is mainly caused by the
inaccuracy of the FE model of the cantilever beam. FE model including 12 beam elements is not perfect enough to represent
the actual beam. Moreover, the boundary condition of the beam can be more accurately described by adding a coil spring
with its stiffness to be estimated. However, it can be seen from the identification results that the current FE model
(12 beam elements with one fixed boundary condition) is good enough to for damage identification purpose (at least for
damage detection and localisation), and at the same time, the computational cost which is related to the complexity of the
model is kept as low as possible.

5. Concluding remarks

The problem of damage detection and localisation has been treated by the proposed MMAE-WGI-FL MOKF method in
the time domain. The application to an experimental and simulated cantilever beam shows that it is possible to detect,
locate and quantify the damage by means of the proposed method.

It should still be mentioned that, the success of the damage identification by the EKF or its derivatives is strongly
dependent on the quality of the original model. The advantage of EKF methods, when compared with the methods in
frequency domain (like FE model updating by natural frequencies), lies in the higher sensitivity to the damage and its
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information efficiency (in the examples above, using only 0.5 s period of I/O time series would provide a good result). On
the other hand, unfortunately, the EKF methods are also sensitive to the modelling errors when compared with frequency
domain estimation methods. Thus, a method where the sensitivity due to modelling errors is low while sensitivity with
respect to the damage parameters is high is the ultimate goal for model identification. The proposed MMAE-WGI-FL MOKF,
to some extent, is actually trying to provide a solution in this direction.
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